Showing posts with label Parry orientation. Show all posts
Showing posts with label Parry orientation. Show all posts

Saturday, 18 February 2017

Another appearance of the mysterious Sub-Kern companion


The image above shows an arc that points towards the bulge in sub-Kern. Its formation is unknown. We captured the arc first time on two occasions on the night of 6/7 January 2016 in Rovaniemi. The current case was photographed in Rovaniemi too, on the night of 28/29 November 2016.

Judging from the crossing of helic arc and (what appears to be) Hastings over the 46° halo, the lamp must be around 3.5 degrees below horizon. I made some quick simulations. The upper one has plates, randoms, and Parry. Plate shaped Parry crystals were used to get the relative intensity of the helic arc and Hastings somewhat comparable to the actual arcs. Simulation has also subanthelic arc, and it seems to be present in the photo, although it is quite broad and diffuse. The lack of Parry arc in the actual display is rather curious.

To make sure that the mystery arc is not some kind of anomalous singularly occurring Tricker, the lower simulation was made with added column oriented crystals. Sure enough, location of the Tricker does not match.


The bulge in sub-Kern seems itself also anomalous and appears to be associated with the mystery arc. The bulge has not been photographed in the numerous displays without this arc.

Monday, 28 November 2016

On some more aspects of a display observed in Rovaniemi on the night of 9/10 November, 2016

by Marko Riikonen

In the previous post of this display I discussed two photos taken towards the end of the hunt, just before twilight. Now it is time to look at the photos taken earlier, from midnight onwards at another location. Please mouse over or click the photos to remove the milky veil that the systems adds as default to them.

Of the several stacks that were photographed, I made simulations of two that are shown below. Unlike the morning photos, now only one stricly oriented Parry population was needed to the explain the display’s halos from c-axis horizontally oriented crystals. So here we have a pure case of uppervex Hastings and nothing reminescent of Wegener.


Except that a little detail strikes a dissonant chord. In the lamp side photo above an arc is touching the bottom of the 22° halo whereas the simulation gives an arc that is separated – the lowervex Parry. Thus the lower arc in the photo is suggestive of tangent arc and column orientation. But everything else – the presence of Tape arcs, the bright helic arc, lack of subhelic or 46° lateral arcs – shouts out loud this is pure Parry. So what is going on?

Well, even though spotlight displays have a highly 2D character, there is divergentness involved and halos may extend more towards the lamp than true 2D halos would. Look for example at the upper Tape arcs in the photo. They are deeply embedded into the 46° halo, although in simulation they are separated. In the photo they even seem to extend slightly inside the 46° halo. And in other displays upper tangent arc always pushes through the 22° halo towards the lamp (it may be a different thing with that halo, though, than with Parry). Even in solar displays various arcs can be glued to their circular rings despite simulations telling they should be separated.

So I would not quite yet scrap the pure Parry character of this display because of that little anomaly at the bottom of 22° halo. It is not the first time to be faced with this matter: we were wondering about it last winter in another potential Hastings case.

As for this lamp side view in general, it seemed not possible to get a satisfying match. For example, with all parameters that I tried, a secondary upper Tape arc (if letters are used to denote it, maybe it should be upper Tape arc B, instead of the Tape arc D that I used in an earlier post) was produced outside the primary. As for the Hastings, in the photo it is brightest near the lamp, then has an intensity drop just inside 46° halo before getting again a bit brighter outside. I could not reproduce this variation. I think there is going on something that is beyond the reach of the simulation software. In the simulation shown was used just one Parry population optimized to make a Hastings that is brightest near the lamp and vanishes outwards. The crystals were thin h/d 0.05 plates. Such a solution did not quite produce matching intensity distribution for the helic arc, and I am certainly not proposing this as final solution. The parameter table for the simulation is not given as I happened not to save it. Because in the photo there is Moilanen arc, I added it to the simulation too. Simulation light source elevation is -5 degrees.

Opposite to the lamp the view is very much Parryish, as shown below. In addition to simulation I have provided also a br version of the image because it makes it easier to distinquish the spikes of lamp artefacts from halos. It seems to show that inside the subanthelic arc there is no diffuse arcs, just artefacts. Another image further below also has the hallmarks of pure Parry.


In the sideview image below noteworthy is the very thin core of the sub-120° parhelion. It is as thin as the sun pillar above the Parry arc. In br version this core is better separated from the glow surrounding it. Further below are four other photos from the first part of the night.

 
 








Finally, I make a return to the anthelic region photo from second part of the night. Earlier I had shown only br version of the blue spots in Liljequist parhelia, but they come out also in “visible wavelengths”, as demonstrated by the extremely saturated version below. Noteworthy is also the dark area that seems to be confined by the shape of subanthelic arc even though the top of the subanthelic arc is not seen. This was something I raised up in an earlier post that discussed a display photographed by Marko Mikkilä.

Wednesday, 23 November 2016

A pure breed uppervex Hastings


In snow gun diamond dust displays Parry orientation is often strongly emphasized in relation to column orientation. There may be no signs of column orientation at all, except for perhaps a slight tanget arc brightening on top of 22° halo.

Such displays have made observers to ask themselves whether the uppervex Hastings arc – the Hastings arc component that is touching the uppervex Parry arc – could be sometimes be obseved in addition to the usual Wegener, or even without it. So far displays where light source elevation allows separation of uppervex Hastings and Wegener have not resulted in any candidates.

However, in spotlight displays where lamp is at or below the horizon, we have managed to photograph during the last and this winter a several of cases that are suggestive of an uppervex Hastings. And not even suggestive, but outright assertive.

The uppervex Hastings intensifies with lowering light source elevation, only complication is that it then starts to overlap with Wegener and identification must be done on the basis of other halos in the display. If Parry orientation halos are prominent and column orientation halos such as 46° lateral arcs, diffuse arcs and subhelic and Tricker arc are very weak or absent, then we might say that the “Hastgener” in the display is indeed Hastings arc.

As an example of a display that leaves little doubt of its Hastings nature, here is shown a one that Marko Mikkilä observed this year, on the 2nd January in Sievi. The lamp was resting on the ground on a rather level field and is according to Mikkilä about 3 degrees below the camera.

We see no evidence of column orientation – no 46° lateral arcs, no Tricker, no subhelic arc. Instead, in the image there is an overwhelming helic arc and Tape arcs, which both are solely Parry orientation born. Thus the faint “Hastgener” must be an uppervex Hastings arc, rather than Wegener.


Above is a attempt at simulating with HaloPoint. It supports the Parry scenario untarnished by columns, even though the details may not be quite right. Perhaps the most striking mismatch is with the subanthelic arc, which is bright in simulation but seems to be missing from the photo. However, there is a darker area which looks as if shaped by subanthelic arc. This seems to be a real effect, we have seen similar looking dark voids inside anthelic arcs before and in an upcoming post I will be showing a good example of such darkness associated with this halo. Perhaps the more intense parts of subanthelic arc are outside left outside of Mikkilä’s photo, although in that case it should have been possible to make a matching simulation. I actually did find an option which was better in that respect, but other parts got too wrong to take it seriously.

An earlier display in the same location by Mikkilä seems to also contain a pure uppervex Hastings.

Monday, 29 February 2016

Wegener or Hastings?



This spotlight display that was photographed in Rovaniemi on the night of 5/6 January rises the question of whether it is Wegener or Hastings arc or both together that is seen here. From the outset, as there is helic arc but no subhelic arc one could argue that it is rather the uppervex Hastings arc.




When comparing with simulations (below) it does not look that obvious anymore. The curvature and extent of the arc looks more akin to Wegener than Hastings (the side view image). And it is possible to simulate Wegener without subhelic arc by using thin plates in column orientation. Indeed, to have best agreement with the images, in all simulations thin plates were used both in Parry and column orientation.
In the image on the left the crystal h/d is 0.1 for all simulations. In the one on the right it is h/d 0.03 for rotations of 0.5 and 5 degrees, for full rotation simulation h/d 0.1 was used. Crystals are triangular, oriented in Parry orientation so that the tip is pointing up.
Well, none of these simulations come out satisfying. The light source elevation for simulations is -5 degrees.
Marko Riikonen / Nicolas Lefaudeux
– added one more image with simulation containing both Wegener and Hastings



Tuesday, 4 December 2007

More photos from three weeks ago in Rovaniemi


It seems putting the photos of the recent displays to my web page will delay. So, in a meanwhile here are two more photos of the display three weeks back.


When light source is at 0° elevation, some difficulties arises in identifying certain halos. Tricker arc and subanthelic arc merge together, as do helic and subhelic arcs. However, the subanthelic arc is formed by Parry-oriented crystals, while Tricker arc is from singly oriented columns. Because in this display the 46° supralateral arc is rather strong, and there are only weak indications of 46° Parry or Tape arcs, probably singly oriented columns were in command. The even brightness of the Tricker/subanthelic loop is also typical for Tricker arc. Subanthelic arc has strong brightenings on the sides - at least in the simulations - and that is actually what seems to be present in the the display of last weekend.

The reason why halos are seen so strongly in the halogen light is probably the relatively dark background sky as compared to sun or moon situation. Yet all the halogen lamp displays that I have photographed so far have been hampered by city lights. Once the crystal cloud drifts to the dark outskirts of the city, more intense appearances should be expected.

By Marko Riikonen

Saturday, 1 December 2007

Another halogen lamp display from Rovaniemi


A bright halogen spotlight and diamond dust is a magic combination.

Spot yourself exactly in the middle of the beam and breathtaking halo views may rewards you. An outsider will see just somebody bathing in the light and may wonder what is going on. There might be a Moon in the sky at the same time - like in the case shown here - but it shows hardly no halos at all. The lamp creates its own universe of halos.

The Ounasvaara snow guns created this display last night in Rovaniemi in the beam of a Cyclops Thor Platinum X-15 halogen lamp. Because of the lack of 46° lateral arcs, this display must have been dominated by Parry crystals. Indeed, in the lower right image there are both upper and lower Tape arcs as an indication of Parry orientation.

An interesting feature is seen in the images on left (the lower image is an unsharp masked from the upper). There seems to be a loop inside the helic arc. Much like the loop formed by the subanthelic arc.

On the upper right is a simulation that shows a quite similar loop (arrow). The crystals in simulation are Parry oriented and they are semitriangular, a half way between a triangle and regular hexagon. The thing in the photo looks to me like a halo and it might be the one shown in the simulation. I have not raytraced it, so I don't know what it might be called. There are some differences in the loop sizes between the simulation and the photos, but then again the projections are not exatly the same.

A bit more could be said about the results of the last night, but this must do for now. The simulation was made with a program by Jukka Ruoskanen.

By Marko Riikonen

Tuesday, 31 January 2006

Twenty years from first observation of Hastings arcs



















Hastings arc is rare halo from Parry oriented crystals. It was predicted by C.S Hastings in 1920, but it wasn't until 1986 that it was first time observed, by Walter Tape at South Pole. 

The photo on the left is the latest documentation of Hastings arc. This moon display was seen by Marko Mikkilä at Sievi last December. Like so many of the good diamond dust displays in Finland, it was also made by snow machines. 

The image is stacked from 6 individual unsharp masked images. White arrow marks the Hastings arc, red heliac arc. The display resists succesful simulating. The problem is the oddly short Parry arc. Mikkilä's simulations indicate towards plate shaped Parry crystals - a crystal falling mode that has been thought of as unrealistic.

Hastings arc looks much like the Wegener arc, except that it touches Parry arc instead of 22° upper tangent arc. Simulations series from Parry oriented crystals are here.

A list of known observations:
21. Jan 1986, Walter Tape, South Pole (in Atmospheric halos)
11. Jan 1999, Marko Pekkola, J. Moilanen and M. Riikonen, South Pole.
Dec 2004, Max Emerson, Swizerland (photos and video
17. Dec 2005, Marko Mikkilä, Sievi, Finland.