Showing posts with label Halostack. Show all posts
Showing posts with label Halostack. Show all posts

Thursday, 2 May 2019

Kern with subhelic arc in the UK


Berkshire (UK), 28 April 2019: Top left corner shows what's left after applying the gradient subtraction and stretching of histograms on a 38-frame average stack. Top right and bottom left, respectively, are with additional blue-minus-red subtraction and colour-channel enhancement. A HaloPoint simulation is included for reference at the bottom right corner.


While relaxing at home in the evening of a mostly cloudy day, a ray of light caught my eye and I checked the halo situation. In fragmented cirrus there was a mediocre circumzenithal arc (CZA) but not much more than that (my view towards the setting Sun is not that great). I took notice of the Sun being low in the sky so odds for Kern arc were on the rise: in the next moment I was setting up my DSLR to get some photos from my backyard.

CZA disappeared soon after I started shooting the first set of images, but it came back a few minutes later so I chose to do a re-run. Fortunately so, as the latter set turned out fruitful indeed in the post-processing.

The processed stack indicates presence of a faint Kern arc as an extension of CZA at the left. Slightly further to the left, there is a white arc that best matches the subhelic arc in the simulation. I think there is also a subtle suggestion of helic arc alongside of the subhelic, but this is less convincing. Furthermore, there are colored patches below the CZA approximately where 46° contact arcs would appear if there were Lowitz-oriented crystals in the mix. The simulation shown above is a synthesis of three distinct populations, including singly-oriented plates, singly-oriented columns, and Lowitz-oriented plate crystals.

Sunday, 2 April 2017

Subvisual odd radius halos in the UK

In the afternoon of 26 March, 2017, I was spending time outdoors with my family and wasn't too well equipped for serious observing. Of course, I had paid some attention to cirrostratus clouds drifting in the sky, but most of the time I struggled to see any significant halos. There were just occasional patches of 22° halo: or at least that's what I thought they were. But then the upper suncave Parry arc appeared so I had no choice but to start photographing immediately. After all, you don't get Parry every week, and in fact this was my first such encounter in 2017. During the next 20 minutes or so, I took a decent set of photos, but then gave up as it appeared that the display had become insignificant again.

My hope was to find a few more halos in the post-processing, and stacking did a good job indeed. The stack shown above is from the first 50 frames and covers a total of 196 seconds. On the left the unsharp mask is applied on individual frames before stacking. The version in the middle is a gradient-subtracted average stack, which is further processed by using the blue-minus-red subtraction technique on the right. In addition to the usual stuff and the Parry arc, we can identify upper and middle Lowitz arcs as well as a short piece of helic arc to the left from the circumzenith arc. But that's not all - there are also odd radius circular halos.

For comparison, the stack below is from the last set of 30 frames that I took more than 30 minutes after the last signs of the Parry arc had disappeared. This stack covers a total of 174 seconds. I didn't really expect to find anything special at this point, but took the photos anyway out of curiosity. Apparently the odd radius stuff is still in play. My feeling is that it had been there all the time, possibly long before I noticed the Parry for the first time and also long after I had got indoors to celebrate the Mother's day dinner.

What is shown below is an attempt to make the scene as clear as possible by combining photos from two different series into one stack. 100 frames are included, covering 13 minutes in time but missing about six minutes in the middle. My interpretation is that the relatively typical pattern of 9°, 18°, 24°, and 35° halos is complemented by the exotic 13° halo. But I'm not sure and it would be great to hear what readers might think of the case. Whether the 20° halo is missing altogether or masked behind the suspiciously wide 18° halo, I am not sure of that either.

Saturday, 4 March 2017

Odd radius halos with Wegener and subhelic arcs in the UK


A short-lived display of relatively high quality occurred in Berkshire, UK, in the morning of 4th March, 2017. A routine check at 9:35 local time suggested the presence of faint 18° and 23° parhelia, in addition to the usual 22° stuff, so I collected my camera, tripod and blocker and set up the system in a nearby park area. After just 25 minutes the display was all over, but there had been enough time to capture three 30-frame series for stacking.

In addition to the 18° and 23° parhelia, both visible to the eye during the display, the processed stacks suggest parts of 20° and 35° (and possibly 24°) circular halos. Unfortunately, the region of 9° halo is over-exposed in my photos. However, as far as my visually-based observations are to be trusted, there simply were no halos 9° from the Sun.


Given that we are dealing with a cirrus display here, I find the presence of both supralateral and infralateral arcs indicative of fairly ideal column crystals. This is confirmed by the side-view stack, as faint Wegener and subhelic arcs can be identified. The latter crosses the parhelic circle near the tall tree at the bottom. Just slightly further away from the Sun, there is a 120° parhelion too.

Monday, 13 February 2017

Two observations of the Kern arc in cirrus

As was mentioned in the comment section of Riikonen's report of the recent case of Kern arc in arctic diamond-dust, I was lucky enough to catch the mythical arc twice in 2015 at my location in Berkshire, UK. In both cases the Kern arc was extremely faint and could only be uncovered after applying the colour subtraction technique on stacked photos, each based on 20-40 DSLR frames and spanning approximately five minutes in time. Remarkably, in both displays the Kern arc appears in two stacks separated by 10-15 minutes. The display of 20th April is shown above, while the collage below represents the display of 16th June. Each collection contains the colour-subtracted versions on the right-hand-side (processing in the bottom right panel for the April case is by Nicholas Lefaudeux). Left-hand-side panels are with enhanced colour saturation. More photos, including a couple of single frames and other stages of the displays, are available for viewing at the Finnish site at http://www.taivaanvahti.fi/observations/show/37300 for the April case and at
http://www.taivaanvahti.fi/observations/show/38958 for the June case.

In overall terms, the two displays are almost identical. Apart from the Kern arc, there is little to suggest particularly strong presence of oriented plate crystals. Of course, parhelia and circumzenith arc (CZA) stand out in the processed stacks, but in single frames they don't appear too extraordinary. Furthermore, part of the CZA intensity obviously comes from Parry-oriented crystals, which are not thought to contribute to the Kern arc. Even without the Kern arc, the displays would be rather extraordinary in my opinion, thanks to the presence of Tape and helic arcs, neither one often seen in cirrus displays. The June display takes this aspect even further by additionally containing the Hastings arc. Other halos present in the displays include the common ones produced by random, column, and Lowitz orientations.

There appears to be some common thinking that the Kern arc benefits from very low solar elevation. Against that background, the solar elevations in question here seem high (16°-19° in the April case, 18°-21° in June). Had the Sun been a few degrees lower in the sky, the distance of the Kern arc from other halos of interest and from the Sun had been too much for me to catch it in the first place, as I was not specifically searching for it and my personal toolkit does not contain an all-sky lens. But after all, I am not so convinced that the solar elevation makes such a big difference, except possibly when it comes to judging the likelihood of Kern from the intensity of CZA. To illustrate the effect, I produced a set of simulations using the Halopoint software and assuming oriented plate crystals with varying aspect ratios and base shapes. The results are combined in the figure below (each panel contains solar elevations 5°, 15°, 20°, and 25°). With regular hexagons (panels on the top) I get no Kern at all. With regular triangles (bottom panels), I get a decent Kern regardless of the solar elevation, unless the crystals are very thin. Intermediate crystals in the middle row make a decent Kern only if they are thick. In none of the cases does the lowest elevation show the most intense Kern - I'd rather say the opposite is true.